The purpose of this project was to develop lab-engineered pesticide resistance in *D. pulex* to acetylcholinesterase inhibitors, specifically malathion, to protect non-target freshwater organisms from the negative effects of pesticide run-off.

- *D. pulex* disappearance causes trophic cascades.
- AChE inhibitors stop the breakdown of ACh.
- Pesticide resistance in *D. pulex* protects the ecosystem by buffering the effects of pesticides and protecting other animals.

Background

The standard deviations and SEM bars indicate statistical significance due to lack of overlap of the SEM bars. An ANOVA test showed a significant difference between the f value and critical value, which rejects the null hypothesis and shows the statistical significance of the data. The p value further supports the significance of the data.

Methods

- *D. pulex* was exposed to different concentrations of malathion to determine the LD50.
- LD50 malathion was added to malathion jars every 9 days for 54 days to attempt to develop resistance in *D. pulex*.
- LD75 malathion was added to each malathion and malathion control jar. The mortality rates of all groups were calculated to determine the difference between previously exposed and newly exposed *D. pulex*.

Data Analysis

In the resistance testing, when compared to the control unexposed *D. pulex*, the previously exposed *D. pulex* had a 3% lower mortality rate and the sensitive *D. pulex* had a 77% higher mortality rate, leading to a difference of 80% between the 2 experimental groups.

Statistical Significance

The research hypothesis was supported as the previously exposed *D. pulex* had significantly lower mortality rates compared to the sensitive *D. pulex* when exposed to the LD75. Future studies can be completed by exposing other organisms to pesticides with resistant and sensitive *D. pulex*.

Conclusion

I would like to thank Ms. Zeiner who has helped me throughout this project. Contact Information: harrowjo01@esj.org