Development of Novel Cerebral Aneurysm Embolization Method via Injection of Pluronic F-127 Multiblock Copolymer Hydrogel

Finnur Christianson, Ponte Vedra High School

Background/Problem

- Brain aneurysms can rupture and cause hemorrhagic strokes.
- Current treatments consist of endovascular coiling and surgical clipping.
- Reoccurrence in 20% of coiling treatments, surgical clipping is very invasive.
- A biocompatible hydrogel with thermoreversible properties could be a minimally invasive way to occlude the aneurysm completely and decrease the reoccurrence rate.

Design and Methodology

- I created a number of hydrogel solutions
- Created a simulator to model a brain aneurysm connected to blood vessels
- Injected hydrogels with red dye through a catheter into the aneurysm
- X-ray imaging.

Results

- I conducted both temperature dependent and amplitude sweep tests to determine the elastic and viscous moduli.

Rheological Analysis

- Due to their biocompatibility and absorbent properties, coupled with high elastic moduli and shear thinning properties, hydrogel injection for aneurysm embolization has great potential for intracranial aneurysm treatment.
- Polymers that could potentially promote endothelialization would be helpful to ensure a permanent solution.

Conclusions/Future Work

Acknowledgements/References